35 research outputs found

    Path loss modeling for vehicular system performance and communicaitons protocols evaluation

    Full text link
    Vehicular communications are receiving considerable attention due to the introduction of the intelligent transportation system (ITS) concept, enabling smart and intelligent driving technologies and applications. To design, evaluate and optimize ITS applications and services oriented to improve vehicular safety, but also non-safety applications based on wireless systems, the knowledge of the propagation channel is vital. In particular, the mean path loss is one of the most important parameters used in the link budget, being a measure of the channel quality and limiting the maximum allowed distance between the transmitter (Tx) and the receiver (Rx). From a narrowband vehicular-to-vehicular (V2V) channel measurement campaign carried out at 5.9 GHz in three different urban environments characterized by high traffic density, this paper analyzes the path loss in terms of the Tx-Rx separation distance and fading statistics. Based on a linear slope model, values for the path loss exponent and the standard deviation of shadowing are reported. We have evaluated the packet error rate (PER) and the maximum achievable Tx-Rx separation distance for a PER threshold level of 10% according to the digital short-range communications (DSRC) specifications. The results reported here can be incorporated in an easy way to vehicular networks (VANETs) simulators in order to develop, evaluate and validate new protocols and systems architecture configurations under realistic propagation conditions.Fernández González, HA.; Rubio Arjona, L.; Reig, J.; Rodrigo Peñarrocha, VM.; Valero-Nogueira, A. (2013). Path loss modeling for vehicular system performance and communicaitons protocols evaluation. Mobile Networks and Applications. 18(6):755-765. doi:10.1007/s11036-013-0463-xS755765186Gallager B, Akatsuka H, Suzuki H (2006) Wireless communications for vehicle safety: radio link performance and wireless connectivity. IEEE Veh Technol Mag 1(4):4–24Rubio L, Reig J, Fernández H (2011) Propagation aspects in vehicular networks, Vehicular technologies. Almeida M (ed) InTechWang C-X, Vasilakos A, Murch R, Shen SGX, Chen W, Kosch T (2011) Guest editorial. Vehicular communications and networks – part I. IEEE J Select Areas Commun 29(1):1–6ASTM E2213-03 (2003) Standard specification for telecommunications and information exchange between roadside and vehicle systems – 5 GHz band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) specifications. American Society for Testing Materials (ASTM), West ConshohockenIEEE 1609 – Family of Standards for Wireless Access in Vehicular Environments (WAVE). [Online]. Available: http://www.standards.its.dot.govETSI TR 102 492–2 Part 2 (2006) Technical characteristics for Pan European Harminized Communications Equipment Operating in the 5 GHz frequency range intended for road safety and traffic management, and for non-safety related ITS applications, European Telecommunications Standard Institute (ETSI), Technical Report, Sophia Antipolis, FranceThe Car-to-Car Communication Comsortium (C2CC): http:/www.car-to-car.orgMecklenbräuker C, Molisch A, Karedal J, Tufvesson F, Paier A, Bernado L, Zemen T, Klemp O, Czink N (2011) Vehicular channel characterization and its implications for wireless system design and performance. IEEE Proc 99(7):1189–1212Ghafoor KZ, Bakar KA, Lloret J, Khokhar RH, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Int J Wireless Netw 19(3):345–362Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular ad hoc networks: a survey. Int J Wirel Pers Commun. Published Online (May 2013)Michelson DG, Ghassemzadeh SS (2009) New directions in wireless communications, Springer Science+Busines Media (Chapter 1)IEEE 802.11p (2010) Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, Institute of Electrical and Electronic Engineers (IEEE), New York, USA.Karedal J, Czink N, Paier A, Tufvesson F, Moisch AF (2011) Path loss modeling for vehicle-to-vehicle communications. IEEE Trans Veh Technol 60(1):323–327Cheng L, Henty B, Stancil D, Bai F, Mudalige P (2007) Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE J Select Areas Commun 25(8):1501–1516Cheng L, Henty B, Cooper R, Stancil D, Bai F (2008) Multi-path propagation measurements for vehicular networks at 5.9 GHz. IEEE Wireless Communications and Networking Conference, pp. 1239–1244Tan I, Tang W, Laberteaux K, Bahai N (2008) Measurement and analysis of wireless channel impairments in dsrc vehicular communications. IEEE International Conference on Communications, pp. 4882–4888.Campuzano AJ, Fernández H, Balaguer D, Vila-Jiménez A, Bernardo-Clemente B, Rodrigo-Peñarrocha VM, Reig J, Valero-Nogueira A, Rubio L (2012) Vehicular-to-vehicular channel characterization and measurement results. WAVES 4(1):14–24Kunisch J, Pamp J (2008) Wideband car-to-car radio channel measurements and model at 5.9 GHz. IEEE 68th Vehicular Technology Conference, pp. 1–5Gozalvez J, Sepulcre M (2007) Opportunistic technique for efficient wireless vehicular communications. IEEE Veh Technol Mag 2(4):33–39Zang Y, Stibor L, Orfanos G, Guo S, Reumerman H (2005) An error model for inter-vehicle communications in highway scenarios at 5.9 GHz. Proc. Int. Workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 49–5

    Optimum MIMO-OFDM Detection With Pilot-AidedChannel State Information

    No full text
    An optimum receiver for multiple-input multiple output orthogonal frequency-division multiplexing (MIMO-OFDM) communication systems accounting for realistic channel estimation is proposed. The receiver is assumed to comply with the emerging IEEE 802.11n standard and its performance is compared against that of a genie receiver (corresponding to ideal channel estimation) and a mismatched receiver (using estimated channel state information in the ideal channel metric). Receiver complexity is addressed in two steps: first, by developing an iterative expression of the receiver metric and second by implementing a spectral approximation, which allows a dramatic reduction of the receiver complexity with unnoticeable degradation. Since the optimum receiver is based on the availability of channel distribution information, it is shown by numerical results that its estimation has a marginal effect on the error performance and does not represent an issue for the receiver implementatio

    Improved Channel Estimation for Iterative Receivers

    No full text
    In iterative receiver structures, soft information becomes available after the decoding stage. This information is used to enhance the quality of the channel estimates for the next iteration. We derive a generalized estimator based on the linear minimum mean square error (LMMSE) principle for deterministic pilot information combined with soft information. We present the special case of multi-carrier code division multiple access (MC-CDMA) in detail and provide simulation results. The presented channel estimation algorithm can be also applied to direct sequence (DS)-CDMA and multiple-input multiple-output (MIMO) systems

    Bam32 Links the B Cell Receptor to ERK and JNK and Mediates B Cell Proliferation but Not Survival

    Get PDF
    AbstractBam32 is an adaptor protein recruited to the plasma membrane upon B cell receptor (BCR) crosslinking in a phosphoinositol 3-kinase (PI3K)-dependent manner; however, its physiologic function is unclear. To determine its physiologic function, we produced Bam32-deficient mice. Bam32−/− B cells develop normally but have impaired T-independent antibody responses in vivo and diminished responses to BCR crosslinking in vitro. Biochemical analysis revealed that Bam32 acts in a novel pathway leading from the BCR to MAPK/ERK Kinases (MEK1/2), MAPK/ERK Kinase Kinase-1 (MEKK1), extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (p38). This pathway appears to be initiated by hematopoietic progenitor kinase-1 (HPK1), which interacts directly with Bam32, and differs from all previously characterized BCR signaling pathways in that it is required for normal BCR-mediated proliferation but not for B cell survival

    On Channel Estimators for Iterative CDMA Multiuser Receivers in Flat Rayleigh Fading

    No full text
    In this work we compare channel estimation algorithms for use in an iterative CDMA receiver in a block fading environment. The receiver consists of a soft multiuser data estimator, a bank of single user decoders, and a multiuser channel estimator. The multiuser data estimator is implemented as parallel interference canceler with unconditional post-MMSE filtering (PIC-MMSE) and the decoder is a soft-in soft-out MAP decoder. In the channel estimator we make use of dedicated pilot symbols and fed back soft-code symbols which are exploited as additional soft pilot symbols when the iterations proceed. We show that using extrinsic information increases the receiver performance significantly compared to using a posteriori information in the feedback for channel estimation. We introduce a linear MMSE (LMMSE) estimator which takes into account the variances of fed back code symbols and compare it to approximations of the leastsquares (ALS) estimator and the linear minimum-mean-squareerror (ALMMSE) estimator. Performance results are illustrated in terms of bit error rate (BER) and average normalized square error (ANSE) of the channel estimators. They show that the newly proposed LMMSE algorithm outperforms the ALS and ALMMSE algorithms
    corecore